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Abstract. This paper rigorously proves convergence of variations of the unsymmetric kernel-
based collocation method introduced by E. Kansa in 1986. Since then, this method has been very
successfully used in many applications, though it may theoretically fail in special situations, and
though it had no error bound or convergence proof up to now. Thus it is necessary to add assump-
tions or to make modifications. Our modifications will prevent numerical failure and allow a rigorous
mathematical analysis proving error bounds and convergence rates. These rates improve with the
smoothness of the solution, the domain, and the kernel providing the trial spaces. More precisely,
they are rates of approximation to the residuals by nonstationary meshless-kernel-based trial spaces.
In particular, the rates are independent of the type of differential operator. The algorithms are appli-
cable to large classes of linear problems in strong form, provided that there is a smooth solution and
the test and trial discretizations are chosen with some care. Our theory does not require assumptions
like ellipticity, and it can even handle ill-posed problems. Some numerical examples are added for
illustration.
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1. Introduction. The final goal of this paper is to prove error bounds and
convergence of certain numerical techniques that approximately solve a PDE problem
via an unsymmetric or even non-square system of linear collocation equations. The
most popular method of this kind was first proposed by E. Kansa [11] in 1986, and
there are many follow-up papers in engineering journals (see e.g. [5] for a selection)
that can easily be retrieved via the Internet. So far, the method is quite successful
in applications with smooth solutions, but it can fail [10] in specially constructed
situations. Consequently, it has neither error bounds nor convergence proofs for its
original form, and a rigorous mathematical analysis will either require some additional
assumptions or make changes to the method itself. We shall do both, but we shall
stay general enough not to spoil the applicability to elliptic, parabolic, and hyperbolic
problems. Therefore we need a somewhat nonstandard framework which we sketch
here first, to make sure that the reader does not get lost in the technical details we
have to provide later.

Consider a linear operator equation

(1.1) Lw=fL:U—F

between normed linear spaces U and F which is to be solved for any given f € F.
The map L takes a solution u € U to its data L(u) in F. Thus F' will usually be a
Cartesian product of trace spaces of functions prescribed on the domain or on parts of
the boundary. We shall consider a large class of unsymmetric discretization methods
to solve such equations approximately, and we need five essential ingredients.

The first ingredient requires the problem to be continuously dependent on the
data. In quantitative form, this means that the inverse L~! is a bounded linear map
from F' to U. In particular, we assume an inequality of the form

(1.2) lully < CallL(w)||F for all u € U
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with a positive constant C, describing the stability of the problem. In practical
applications this will imply that the problem spaces Uand F' have to be chosen with
some care. In particular, U and F must often be chosen on a theoretical basis,
e.g. as quite large spaces in which certain general existence results hold and which
carry only rather weak norms. Usually, U will be a Sobolev space W' (Q) while F'
is a Cartesian product of Sobolev spaces that provide the right-hand sides for the
differential equation and the boundary data via trace spaces. Continuous dependence
serves here as a replacement for more specific analytic assumptions like coercivity
of a bilinear form. However, in §9 we shall abandon the assumption of continuous
dependence to be able to treat a certain class of ill-posed problems.

The second ingredient is some additional regularity. The actual solution u of a
specific problem will often have more regularity than needed for the spaces U and
F' defining continuous dependence, and therefore we shall focus on a subspace Ug C
War(Q) € W4 (Q) =: U of U which we call the regularity subspace. The additional
regularity of order m — p > 0 will be the driving force behind convergence rates, as
we shall prove later.

The third ingredient is a scale of finite-dimensional trial subspaces U, of U for a
trial discretization parameter r > 0 which uses the additional regularity to provide
a convergent scheme for data approximation. This is formalized by not necessarily
linear maps I, : Ur — U, with error bounds

(1.3) IL(u — I, (w))||F < () for all u € Ug.

It will be this approximation property that yields our convergence rates while feeding
on the additional regularity. Note that we do not use a single discretization parameter
like the usual h here, because we need two different scaling parameters r and s for
trial and teSt discretization. Note further that we do not approximate the solution,
but rather the data.

The fourth ingredient is a scale of stable test discretizations F of the data space F
with respect to the scale of trial spaces U,. This is formalized by a test discretization
parameter s > 0 and linear maps II; : F — F; into a scale of finite-dimensional
spaces F such that the inequalities

| L(ur)|lr < C(r,s)||IsL(us)||F, for all u, € U,
() L(w)|lr, < ||L(u)l|F for allu € U

(1.4)

hold. We call a specific choice of trial and test discretization schemes uniformly stable,
if both constants can be chosen independent of r and s. When restricted to the
finite-dimensional test spaces U,., the inequalities express equivalence of discrete and
non-discrete norms. The second inequality will be easily satisfied by discretization,
but the first one will be hard, because it bounds a non-discrete norm by a discrete
norm, and this can work only for finite-dimensional spaces. It also implies uniqueness
of solutions of the discretized finite systems Iy L(u,) = ,;L(u), which is a serious
problem.

The final ingredient is the class of numerical methods. We do not specify details
in this overview, but we can assume that we can always find elements u; ; € U, with

(1.5) (T L(u = uy )]

F S 67‘,3)

while these need not be unique. In fact, the approximation I,.(u) is a solution, if we
have

(1.6) c(s)er(u) < oy 5.
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Note that we do not attempt to solve the system II;L(u,) = II;L(u) exactly, because
it will be overdetermined and unsolvable in general. However, under the assumption
(1.6) we know that the relaxed problem (1.5) is solvable. In §8 we show how to solve
such problems, and examples will follow in §10. Now we can formulate the core result
of this paper:

THEOREM 1.1. If the analytic problem is solvable by u € Ug and if we solve (1.5)
by some uy. , € Uy, then there is an error bound

=zl < Co (er(w) (14 S0 ) 4 clo)in )

If the discretization is uniformly stable, then there is a choice of 6,5 via (1.6) such
that the above error behaves asymptotically like the trial approzimation error €.(u).
Proof. The assertion follows from a simple chain of inequalities:

1 (u — Tam
IZ(u = Ln(w)l + LT () = )|
er(u) + o(s) T L(I, (u) — )|,
er(u) + o(s) T, L(w — u},,) |,

+(s) T, LT, (u) = u)||,
er(u) + c(8)3y,s + LT () —u)lp
er(u) (14 S0 + c(s)0s

CLQHU_U:,SHU

ININININ
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O

But now we shall have to show how this abstract machinery can be set to work. We
shall finally derive specific convergence rates for problems with continuous dependence
in Sobolev spaces, including the Poisson problem with Dirichlet data as an illustration.

The following sections will treat the above ingredients one by one, and then we
shall patch the results together. Our key tools will be nonstationary meshless kernel-
based trial spaces which allow approximation schemes with high-order convergence
rates while maintaining stability if paired with sufficiently rich test discretizations. It
turns out that the use of smooth kernels makes the final convergence order dependent
only on the regularity of the solution and the problem. The numerical methods for
solving (1.5) will consist of certain variations of the original unsymmetric collocation
method, and we already have solvability via (1.6). This saves us from the degeneration
problems of the standard unsymmetric collocation technique [10]. A simple numerical
example will finally illustrate these numerical techniques.

2. Well-Posed Problems and Regularity. For example, consider a standard
Poisson boundary value problem

—Au = fqg inQ

(2.1) U fp on 90

on a bounded domain  C R? with Dirichlet data fp on the piecewise smooth bound-
ary 0€). In such problems, we consider the equations as being given in strong form,
i.e. we assume the solution u to be regular enough to pose the equations pointwise as

(07 0 (—A))(u)
(65 o Id)(u)

(—Au)(z)
u(z)

fa(z) forallz e
fo(z) for all z € 9.

(2.2)
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But we allow much more general linear equations and boundary value operators.
Formally, we follow the notation of [3] and others to combine differential and boundary
operators into just one equation and write the latter as

(2.3) Lu) = feF

where u is a function from some normed space U of functions. The mapping L
U — F maps solutions u € U to their data L(u) € F, and the given problem consists
in the inversion of L.

However, we want to solve the equation L(u) = f in strong form, i.e. we interpret
both sides as vectors of functions and want them to coincide pointwise. Note that
this is still general enough to cover wide classes of ODE or PDE problems, but it
requires regularity assumptions on the solution u which are stronger than the mini-
mal smoothness properties guaranteed for solutions of weakly formulated problems.
However, it is well-known that problems with regular data and well-shaped domains
will have regular solutions.

When aiming at methods with error bounds and convergence, we have to take a
closer look at the given analytic problem (2.3). In particular, we shall assume that
the problem (2.3) is well-posed in the sense that the solution u depends continuously
on the data f of the right-hand side of (2.3). But we have to make this more precise.
This can be done in various ways, e.g. by total sets of data functionals, but this is not
quantitative. For later use we impose a norm [|.||r on F := L(U) in a suitable way
and assume (1.2) with a positive “analytic” constant C, which describes the norm of
the linear map L~! that takes the data f € F and maps them back to the solution
u in the function space U. Clearly, for such a—priori inequalities we must be careful
with the choice of norms, because they depend on regularity theory, and they always
imply that the homogeneous equation has only the trivial solution. The numerical
methods following below will work on the discretized versions Fy, and thus the proper
choice of F' will also have practical consequences.

So far we have not mentioned any specific numerical algorithm. But if any numer-
ical method has produced an approximate solution % € U to the problem (2.3), one
can calculate the data f = L(i@) € F and the norm ||f — f||r to get the a-posteriori
error bound

(2.4) lu—dlly < Ca-||L(u—a)llr = Ca- |If — fllr

for free, since the residuals L(u — @) = f — f are explicitly known. It means that
errors in the solution are bounded by the norm of the residuals, multiplied with the
analytic constant. Then the following simple observation is very useful for assessing
the validity of a numerical calculation, if the analytic constant is known:

THEOREM 2.1. Let a well-posed linear problem be given in the sense of (1.2).
Any numerical technique that produces approximate solutions with small residuals will
automatically guarantee small errors in the solution. a

Though this theorem is trivial, it is important for providing a safe a-posteriori
foundation for many unsafe and ad-hoc numerical calculations published in science
and engineering journals. If the underlying problem is continuously dependent on the
data and if the naive user at least checks the residuals, the calculations are on the safe
side. But, unfortunately, there is no handbook listing all known inequalities of the
form (1.2) for typical applications in science and engineering. In particular, it would
be very useful to have proven upper bounds for the analytic constants.
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But we also want to provide a special example for the rest of the paper. Guided
by regularity theory for elliptic problems, we specialize to problems where the map L
splits into maps L!,...,LF with L7 : U — FJ, 1< j < ksuchthat F = F'x...x F*
is the data space. We assume U = W§'(Q2) for some bounded domain Q C R? and
Fi =W} ~1i(Q9) where f; is defined via a trace theorem by the order of the operator
L7 and the dimension of the partial domain 2. The space F is then equipped with
the sup of the norms of the spaces F7. The regularity subspace Ug occurring later
will then be a space Ug C Wi*(Q) C U := W4 (Q) for some m > p.

In the standard Poisson problem with Dirichlet data we can take L(u) = (—Au, usq)
mapping U = W£(Q) onto F = Wi ?(Q) x WQ’L_I/Q(@Q). This is a well-established
continuous dependence setting, if the domain is smooth enough to make trace theo-
rems and the regularity order p valid. See e.g. [15, 3] for early references which also
allow distributional data and negative p.

3. Approximation From Trial Spaces. The second ingredient of our frame-
work is some additional regularity defined via a subspace Ug of the space U occurring
in the continuous dependence bound (1.2). At this point, the regularity space can be
quite general, but we also want an approximation property like (1.3) to hold. Thus we
now have to consider our third ingredient, i.e. techniques that construct approximate
solutions @, from a scale of trial spaces U, C U with a trial discretization parameter r.
Note that this still includes plenty of methods, with or without meshes, like finite el-
ements, Petrov-Galerkin schemes, spectral methods, and all variations of collocation.
It is trivial that the choice of the trial space should be such that the true solution
u can be approximated easily by functions from the trial space. In case of solutions
with singularities, like for Poisson problems on domains with incoming vertices, one
should make sure that the trial space contains the expected singular functions.

One way to make this more precise is to assume that there is a mapping A,
Ugr — U, with

(3.1) [lu — A (u)||lu =: 6-(u) for all u € Ug

with a certain error §,(u) which will depend on the regularity subspace Ug.

But the previous section teaches us that we do not need to approximate the exact
solution u in the space U by functions u, € U, C U directly. It suffices to make sure
that the residuals L(u) — L(u,) are small. Thus the crucial quantity is the residual
error ||L(u — u,)||r for any u € U and an approximation u, € U,. In contrast to
the theory of finite elements, we do not consider optimal approximations of u by u,
here, nor do we attempt to minimize the above error with respect to u,. Instead, we
are satisfied if the trial space U, contains for each function v € U an approximation
ur := I.(u) with small residual error €,.(u) as in (1.3).

Of course, if an L-independent approximation operator A, with (3.1) is available,
one can take I, = A, and assume €, (u) < ||L||6-(u) because of

er(u) = [|L(u = L (u))llw < [IL{l[lu — Ar(w)llu < [|L]|6r(u).

But there may be better choices of I,. if L and the special structure of the residual
space W are taken into account.

Inspection of (1.3) for F' being a Cartesian product of Sobolev spaces reveals that
the special approximation I,.(u) should approximate u well including its derivatives,
as far as they occur in the collection of data spaces F7 forming the space F. In
fact, if we go back to our special case U = W} (Q) and F = F! x ... x FF with
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Fi = LI(U) :== W71 (Q9) with a regularity subspace U C WI™(€) and m > p, we
should expect approximation bounds like

127 () = L3 (L (u) ||y -

L < m=u|| LI
(3.2) Wby S O,

ST @)

< Cr™H|ullwy @ for all u € Wi™(Q),

and this should work for a reasonable choice of 0 < p < m and with rates that just
depend on the regularity gap m — p, not on the order of the operators involved.

Note that the standard trial spaces of h—type finite element techniques consisting
of piecewise linear functions fail to provide approximations of more that first-order
derivatives. In contrast to this, trial spaces generated by sufficiently smooth ker-
nel functions can contain approximations to derivatives of any order, without any
additional work needed. We shall explain this in the following sections.

In contrast to many engineering applications where a rather simple solution func-
tion is calculated via a huge FEM system of millions of unknowns, we tend to argue
in favor of small trial spaces designed to capture the essential features of the solution
without taking the detour via a fine-grained space discretization. The consequence
will be that the linear systems get unsymmetric, because any solution from a small
trial space must be tested on a fine-grained space discretization, asking for many
more degrees of freedom on the “test side” than on the “trial side”. Unsymmetry of
a method can be a feature instead of a bug. In what follows we shall investigate the
relation of test and trial spaces more closely.

4. Kernel-Based Trial Spaces. Now it is time to study maps I, or A, with
good approximation properties for certain trial spaces U, in the sense of (1.3) and
(3.1). This is independent of PDE solving, and we shall see that nonstationary mesh-
less kernel-based trial spaces work perfectly.

DEFINITION 4.1. A kernel is a function of the form K : QxQ — R with Q C R?.
It is translation-invariant, if K (z,y) = ®(x —y) with Q =R? and ® : R? - R. It
is radial if it is translation-invariant and of the form

K(z,y) = ®(z —y) = ¢(|lz — yll2) with ¢ : [0,00) - R and z,y € R".

Radial kernels are also called radial basis functions.

Note that radial basis functions ¢ can in principle be used in any space dimension,
but certain properties of the associated translation-invariant kernel & on R? may
depend on the dimension d.

Kernels provide excellent tools in various disciplines, including Approximation
Theory, Partial Differential Equations, and Machine Learning. The most important
kernels are reproducing kernels of some Hilbert space which can be called the “na-
tive” Hilbert space for the kernel. Any Hilbert space H of functions on a domain
with continuous and linearly independent point evaluations has a kernel K with the
reproduction property

flx)=(f,K(z,"), for all f € H, z €.

Conversely, any (strictly) positive definite [6, 22] and continuous kernel K on €2 is the
reproducing kernel of a native Hilbert space Nk of continuous functions on 2. We
denote the norm on the native space Nk by ||.||k-

We focus here on trial spaces provided by kernels. Like in wavelet theory, the
notions of translation and dilation play an important role. First, a general kernel
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K : QxQ — R can be translated to points y1,...,yx € Q called centers to provide
trial functions u;(z) := K(z,y;), 1< j <M on Q.

In many cases, the set Y := {y;, 1 < j < M} of centers should fill a bounded
domain  in such a way that the centers get dense when M — oco. This is expressed
by the fill distance

= h(Y,Q) = inf —
h:=h(Y, Q) jelgylgyllw yll2

depending on 2 and the M centers in Y, and which should converge to zero if M
tends to infinity. The fill distance is the radius of the largest open ball in Q that
contains none of the centers y; from Y. We use the notation h here, but later we shall
have two different fill distances for trial and test centers, and then we shall use r and
s for clarity.

A nonstationary kernel-based trial space can now be defined as

(4.1) U, :=span {K(-,y;) : 1<j <M} withr:=h:=h(Y,Q)

where the dependence on the location and number of the centers is suppressed in the
notation.

In the above nonstationary situation, only translations, but no dilations are used.
The translated kernel is fixed and independent of the fill distance h = r. There is
no rescaling, if h = r gets small. This is in contrast to the stationary technique in
standard and general finite elements [4]. There, the basis functions are rescaled when
the fill distance changes, and in the translation-invariant kernel-based case this can

be described by
U, := span {q) (””_ry’> .1 gng}

where now the wavelet-style interaction of translation and dilation are apparent.

The mathematics of the stationary and nonstationary case are quite different.
This often leads to misunderstandings. The stationary situation, as included in
the Generalized Finite Element Method [4], uses polynomial reproduction and the
Bramble-Hilbert Lemma. If centers are on a grid, it applies the Strang—Fix theory.
Convergence orders are closely tied to polynomial reproduction properties, and the
choice of kernels is quite restricted, because integrable kernels like the Gaussian do
not yield convergent stationary approximations for h — 0 [6]. Stability is usually
much better than in the nonstationary case, but convergence rates are much smaller.
We focus on nonstationary kernel-based trial spaces here, because condition problems
can be overcome [5, 12], and we are heading for methods with high approximation
orders.

We define a map I, : u — u, := I,(u) € U, of (1.3) via interpolation in the
centers by solving the system

M
(4.2) ur(yr) == Y oK (yj,u6) = uly), 1 <k <M

=1
for the coefficients ay, - .., ay defining the function w, := I.(u) in terms of the basis

functions of the nonstationary trial space U, of (4.1). This interpolation problem
is solvable by definition, if the kernel K is symmetric and positive definite [6, 22],
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Function | ¢(r) Range | Smoothness
Gaussian | exp(—r?) d>1 |alp
inverse multiquadric | (r2 +¢2)Y, y < —d/2,¢>0|d>1 | all B

Sobolev for W (R?) | r*= 42Ky _q/5(r), k>d/2 |d>1 | B=2k—d
Wendland C? [20] | (1 —r)}(1+4r) d<3 |3
(1-r)3(1+5r) d<5 |3
Wendland C* [20] | (1 —r)%.(3 + 18r + 35r?) d<3 |5
(1—r)" (1 +7r +16r?) d<5 |5
TABLE 4.1

Radial basis functions ¢(r), positive definite on R%

because then the M x M matrix with entries K(y;,yx) is symmetric and positive
definite. Table 4.1 gives some examples. We ignore conditionally positive definite
kernels here and refer to [6, 18, 22] for details.

The interpolation system (4.2) makes sense for all functions u which have well-
defined function values at the centers yi. Thus the mapping I, is at least defined on
C(f2), but for solutions u of PDE problems in strong form we use it on a regularity
subspace Ug of C(Q) C U.

The book [22] contains a fairly complete account of interpolation error bounds in
the nonstationary setting, while bounds for stationary and regular cases are dominant
in [6]. But in view of (1.3) and (3.2), we need very general error bounds in Sobolev
spaces which are not covered in these books. Here (on the trial side) and later (on
the test side) we use a general result from [17] which was extended in [23].

THEOREM 4.2. Fiz a bounded domain Q C R? with a Lipschitz boundary and
an interior cone condition. Assume u € Wi™() and fix a constant p with 0 < p <
|m] — d/2. Then there are constants C > 0 and hg > 0 such that

(4.3) lulwe @) < C (R™ #lulwp @) + b *llulloo,v,)

holds for all u € W*(Q), all 0 < h < hg and all finite subsets Yy, in Q with fill
distance at most h.

This can be seen as a quantitative Poincare-Friedrichs inequality for functions
which are small on a finite subset, and it is independent of any trial space.

But if we now take h = r and interpolate a function u on Y}, by I.(u) using points
from Y}, as translations in (4.1) we get

(4.4) [u — I (u)|we @) < Cr™ #lu — L.(u)|wym(q) for all u € Wi ().

Then we use the standard fact that the interpolant I.(u) solves the minimization
problem

[lv|lk = min, v € K, v(y;) = u(y;) for all y; € Yy,

implying that ||I.(u)||x < ||u||x holds if we assume u to be in the native space Ng
for the kernel K.

Therefore we strengthen the requirement on the regularization subspace Ug and
on the regularity of our solution u to

(4.5) UGNK:URQWZm(Q)gU.

with bounded embeddings. This is easy if the kernel is smooth enough, and for the
kernels in Table 4.1 the inequality 8 + d > 2m is a sufficient condition.
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We can now replace (4.4) by
lu — I (u)|lwe @) < Cr™ #||ul|k for all u € Nk

with a different constant. This inequality can be coupled with trace theorems for the
operators L1 : W*(Q) = W™ 7 (Q9) to get

127 (w = I (w)) < Cllu = Ir(u)llwg ) < Cr™ #[lul|x for all u € Nk

w; ™ (@)
which yields (3.2) in a slightly restricted form and our third ingredient (1.3) as
(4.6) [|L(u — L.(w)||lFr < Cr™ #||lul|k =: €-(u) for all u € Ur = Nkg.

5. Stability of Kernel-Based Test Discretizations. We now consider the
stability conditions (1.4), our fourth ingredient. This requires several steps, and we
give a compressed form of the argument first, using the terminology of the introduc-
tion.

THEOREM 5.1. Assume scales of trial subspaces U, C U and test spaces Fs with
a-priori inequalities (1.2) and

IL@)llr < Ci(s)l|ullug + Co(s)[[TsL(u)||F, for allu € Up CU
(5.1) |urllvg < Cs(®)||url|ly for allu, € U, CU
(o] (8)03 (T‘)Ca < 1/2.

Then, in view of (1.4), these scales satisfy

I L(ur)llr < 2C:(s)||TLs L(u,)|

F, for all u, € U,.

Proof. Just consider

IL(ur)llr < Ci(s)l[urllug + Co(8)I[Ts Luy) ||,
< Ci(s)Cs(r)[|urllo + Co ()| L(ur) ||,
<

Ci(s)Cs(r)CullL(ur) |7 + Ca(s) ([T Lur) | 7,

a

To explain the meaning of this machinery, we note that the first a-priori bound of
(5.1) is modeled after (4.3) of Theorem 4.2, but now on the test side with parameter s.
The quantity C1(s) will be a positive power of s related to the smoothness difference
between spaces F' and Ug, while Ca(s) can be a negative power of s depending on .
The second is an inverse Bernstein-type inequality on the finite-dimensional trial space
U,, because the left-hand side norm is stronger than the right-hand side norm. Here,
we must expect that Cs(r) is a negative power of r. The third inequality means that
the granularity of the test discretization must be fine enough in relation to the trial
discretization in order to guarantee that the homogeneous linear system II;L(u,) = 0
has full rank, as postulated by the assertion of the theorem. This is a quantitative
version of an earlier density result in [13].

We now have to prove the a-priori inequalities of (1.4) and (5.1) one by one. We
do this for meshless kernel-based trial spaces and for our running example generalizing
the Poisson equation. The trial discretization via U, and a set Y, of centers is chosen
as in §4. We assume (4.5) and have the approximation result (4.6). On the test side,
we use a set X, of test centers which has a fill distance s on all of Q. For all the
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operators L’ that arise in L, we will have a selection X7 := X, N of points with the
same fill distance with respect to Q7, because we can assume that all Q7 are subsets
of Q. The projectors IIJ on FJ just map functions from F7 = Wy ~1i(Q9) to their
values on XJ. We thus have to assume Sobolev embedding conditions

(5.2) 2(u— fj) > dim(¥), 1 <j <k
The discretized spaces FJ will be RI*: | with the Lo, norm, and we have

ILL (u) = (L7 (u)(X3), L)l g = 1L (w)]l o s

This implies by Sobolev embedding

T L) || g5 = 17 (@)l o x3 < 1 (@) |oo .8 < CIILj(U)IIW;—fj(Qj)

where the constant is independent of u and s. We now assemble this into a discretiza-
tion Fy := F! x -+ x FF with Il :=TI! x --- x II¥ of F = F! x --- x F¥ and take the
sup norm of the components. Then we have

ITLs L(w)| 7, sup; < j<p [TELY (W)l s
SuP;<j<k ||L3‘(u)||007Xg

Sup1 <<k ||LJ(Uj)||oo,QJ'
CSUP1§j§k [l L7 (U)||W2#—fj ()
ClL(u)llF

and get the second inequality of (1.4) with a constant that is independent of s and
only dependent on Sobolev embedding. This leaves us to prove (5.1) in order to get
the first inequality of (1.4).

Fortunately, the inequality (4.3) holds for general Sobolev spaces, and we can
apply it on the test side for different operators. In fact,

ININ I

129 @l yp-ss gy < C (sm—uny(u)uwzm_fj . S—(u—fn”y(u)”w,xg)
< O (s llullwg o + 5 I @)l x: )
IL@llr < C ™ #lullic+ 5 L L))

We now go for the inverse inequality in (5.1). Assume K to be a translation-invariant
kernel of finite smoothness which is Fourier-transformable in R? with an exact decay

(5.3) e(1+ |lwll2) 1 < K(w) < C(1 + ||wll2)#~¢ for all w € R?

where the constants 3 can be read off Table 4.1. Then we can cite the Bernstein-type
inequality
||UT||W2(d+ﬁ)/2(Rd) < CTi(d+ﬁ)/2||UT”L2(Rd) for all u, € U,

from [16] provided that the trial centers in Y; are not too wildly scattered in the sense
that the minimal separation distance ¢(Y;) is uniformly bounded below by the fill
distance h(Y;, Q) via

5.4 Y,):= mi il >C in [ly — yill2 = A(Y;,Q
(54) ¥r):= min lly; =il 2 Csup mip iy = yillz = (¥, @)

such that both quantities behave asymptotically like the trial discretization parameter
r. The follow-up paper [19] extends this to

(5.5) lurllwg @) < CT*"™||ur|lweq) for all u, € Uy

with the range 0 < u < m < 8, and this is precisely what we need.
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6. Strong Convergence in Sobolev Spaces. We now assemble what we have
in case of our running example with continuous dependence in Sobolev norms. In
contrast to the introduction, we proceed here from the user’s point of view.

We start with the analytic problem. Consider an operator equation L(u) = f
as in (1.1) whose solution u is continuously dependent on the data f. The analytic
constant C, of (1.2) is assumed to hold if we pick spaces U = W§'(2) and F defined as
a Cartesian product of Sobolev trace spaces as in §2. If several choices of y are possible,
the user should know that the final convergence will take place in U = W}'(€), but
large p have to be paid for by regularity. If convergence of higher-order derivatives
is of importance, a sufficiently large u should be chosen. Since we solve problems in
strong form via evaluation of residuals, we have to pick u large enough to let all data
have continuous point evaluations. This is expressed by the requirement (5.2). At
this point, the lower bounds for p will rule out problems with low regularity. Such
problems should be tackled with methods using weak data functionals and involving
integration. We plan to deal with such methods in the future, in particular with the
unsymmetric meshless Petrov-Galerkin method of Atluri and his collaborators [1].

The next step concerns regularity. We assume that the solution should have at
least a Ugr := Wi™(Q) regularity with some m > u. By standard arguments from
Approximation Theory, the difference between m and p is the driving force for the
possible convergence rates. The user has to decide which m is adequate. Larger m
will improve the convergence rates, but they may not be justified by the smoothness
of the problem.

Then we pick a kernel K which is smooth enough to have its native space Nk
contained in WJ*(Q2). In view of Table 4.1, this requires § + d > 2m. The solution
u must have some more regularity than WJ"(Q2), because it should be in Ug = Nk.
The excess regularity of Ng over Wi™(Q2) does not pay off later, and thus it is a good
idea to stay with a kernel satisfying 8 4+ d = 2m to have norm equivalence between
Wi (Q) and Ng. Note that the compactly supported radial polynomial kernels of
Wendland [20] satisfy this for certain choices of m, 3, and d.

Now it is time to pick a meshless trial discretization U, via a set Y;. of trial centers
with fill distance r using the kernel K. Then we could expect the convergence rate
er(u) < Cr™# for u € Nk if we could directly interpolate the solution in the points
of Y,.. The constants C3(r) in (5.1) will then come out to be of order r#~™ via (5.5).
However, for this we have to assume (5.3) and (5.4), meaning that the kernel should
have finite smoothness and that the trial centers are not too wildly scattered.

The next step is to pick the test discretization via a set X of test centers with
fill distance s. The first inequality of (5.1) will then hold with C;(s) < Cs™ * and
C3(s) < Cs™H. The second inequality of (1.4) holds with ¢(s) independent of s because
we assume continuous residuals and corresponding Sobolev embedding theorems. But
we have to make the test discretization fine enough to satisfy the third inequality of
(5.1), which amounts to

1

m—ppp—m o _ e
(6.1) Cs™ Hr <gors<r o)
As expected, this means that the test discretizations must be somewhat finer than
the trial discretizations, but the ratio of the granularities of the discretizations can be

kept fixed. There is plenty of leeway for small trial and large test spaces.
We are now ready to put everything into Theorem 1.1, while we assume that we
solve the discretized problem (1.5) with accuracy 4, . With new generic constants
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we get

(6.2) lu—urllwg@y < CEmH(A+Cs™#) +0rs) [lullk-
Note that this bound has the proper approximation error of order r™ # holding
between Sobolev spaces U = Wi'(Q2) and Ugp = Nk C Wi'(Q2), but there also is a
counteracting term s~ # which is the price we have to pay for working on discrete
residuals in the Ly, norm while bounding the error in the norm on U = W' (Q). If we
choose 6, 5 properly via (1.6) and s via (6.1), we have solvability of the system and
an error bound

llu = ur sllwg @) < Cr™ = |lullx.

7. Weak Convergence in Sobolev Spaces. Analysis of the previous section
shows that the term s # in the first line of (6.2) with some positive p satisfying
(5.2) makes the final bound worse than what could be expected as an optimal result.
Tracing this back to (4.3) shows that one should better look at another variation which
allows p = 0 without spoiling the assumption that the data are still continuous. In
fact, reference [23] also has

(7.1) ulp @) < C (hm—d/2|u|W£n(Q) + ||u||oo,yh) for all u € W (Q)

if [m| > d/2. But this does not easily fit into the framework required for continuous
dependence unless we make sure that all the spaces F7 carry the Lo, norm and are still
useful for continuous dependence. But this would mean that we take y so small that
we have a continuous embedding C(Q7) C W/ %7 (Q9), i.e. we now take y = min; f;.
Note that this will lead to a weak convergence result in U := W4'(Q), though the
problem formulation is still strong. For instance, a problem with Dirichlet data will
lead to 1 = 1/2 due to the trace map W4'(Q) — W;ilﬂ (09) if all other trace or
differential operators have a larger loss in the order of the respective Sobolev trace
spaces.

Thus we now repeat our basic argument for U := WJ'(Q) with g = min; f;. By
the standard embedding theorems we now choose the spaces F7 as C (/) with the L,
norm and still get continuous dependence, provided that the analytic problem allows
this choice of u. This is not trivial, because right-hand sides of differential equations
now have to allow distributional data in general. But for the Poisson problem this is
correct, if the domain is smooth [15, 3].

Our choice of regularity space Ug and the kernel K will be as above. This fixes
B and m. Then we have to look at the approximation order in (1.3) and get

m—~_{—d/2

lu — In(u)|lwe @) < Cr ||u||k for all u € Ur = Nk

and 0 < £ < |m| — d/2. If we combine this with trace theorems for the operators F7
we find

1L (u=In(w) L0y < Cllu—In(u)]| Cr™ 1= |lu||x for all u € Ur = Ni.

wi (o S
Thus we get

er(u) < Cpm—d/2-max; (f;)
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for (1.3). The second inequality of (5.1) can handled as in the previous section, giving
C3(r) < Cri—m, _

The discretization of the FV spaces is again by pointwise evaluation on a set X,
of test centers, taking the discrete Lo, norm. Since the spaces FJ are now equipped
with the Lo, norm, we have ¢(s) = 1 in the second inequality of (1.4). The proof of
the first inequality of (5.1) now starts with (4.3) on the various data:

2O P olf s e T 21 C] PSS 1 41C1) N
C (5™~ 1= ullwgn () + 1L (w)]lo,x.)
C (s™ =% 2 lullx + 1L (w)lloo,x. )

INIA INA

for all u € Ur = Nk where d; is the dimension of 7. Thus the first inequality of
(5.1) holds with Cy(s) independent of s and with

Cl (3) S Csm—d/?—man fj X
Thus we get uniform stability of the discretization scheme, if the third inequality

Csm—d/2—maxJ- fj,,.[.L—m < %

of (5.1) is satisfied. This holds if

m—min; f;

s < C,,.'m—d/2—maxj fj

which is not too bad for large m.
Since the discretization scheme is uniformly stable, Theorem 1.1 now gives the
error bound

llu = ug sl min; s @ = Crm—ad/2=mazifi||jy|| g for all u € N C Wi (Q)
2

provided that the numerical solution of (1.5) observes (1.6). The left-hand norm
is rather weak here, and the approximation order can probably be improved. For
instance, a standard two-dimensional Poisson problem with Dirichlet data would lead
to

[|u— u:78||W21/2(Q) < Or™73||u||k for all u € Ng C Wir(9),

but an optimal rate for the Sobolev spaces involved would be m —1/2 instead of m —3.

8. Numerical Methods. We now want to look at techniques to solve the dis-
crete problem (1.5). It amounts to solve the k linear problems

WL (u—u;,)=0,1<j<k

approximately, where we discretized the operators L7 on the domains 7 by taking
only point evaluations. This takes the form of collocation

L (u)(zj3) = L7 (uy o) (z5:) =0, 1 < j < k, 1 <i <N
where the points of the test discretization X, are the union of the sets

Xg = {lea"'axij}) 1<5< ka
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and where we dropped the dependence on s in the notation for the x;; and for N;.
For a shorthand notation, we introduce the functionals

)\ji DU Lj(U)(.’L'ji)

and rearrange them into a single-indexed list Ay,..., Ay with N = Ny + ... 4+ Ng.
Since uy. ; should be in the trial space U, generated by translations of the kernel
K at trial centers forming Y, := {y1,...,ym}, we arrive at a system

M
Z am A K (z,ym) = ANju(z), 1<i< N
m=1

with M unknowns and NV equations. In case M = N this is exactly the unsymmetric
collocation technique dating back to E. Kansa in 1986 [11]. It has no rigid foundation
yet, and it can fail in specially constructed situations [10], though is works fine in many
applications. In the first years it was applied to small problems with smooth solutions
due to serious condition problems, but recently there are results on preconditioning
[5, 12] that allow a wider range of applicability.

In view of Theorem 5.1 and the two previous sections we know that N > M holds
and the system has full rank M. Thus it will be unsymmetric and overdetermined,
but at least there is no rank loss. Furthermore, we know by (1.3) and (1.6) that there
is a good approximate solution to the full system. This means that we can allow any
numerical method that produces a solution with similar or less deviation.

Since our convergence analysis worked with the Lo, norm on the discretized F
spaces, a first choice would be to go for a best Ly, approximation of the right-hand
side. This means to solve a linear optimization problem which minimizes n under the
constraints

M
(8.1) 1< Y amAiK(z,ym) = Nfu(z) <n, 1<i< N

m=1
where a1, ...,ap are the other variables. If the revised simplex method is applied to

the dual problem, each step has a O(M?) complexity. The Kuhn-Tucker conditions
ensure that one can work with at most M +1 active test conditions at each time. This
makes the number N >> M of test centers much less relevant than M, and for nicely
chosen low-dimensional trial spaces one can get away with rather small computational
complexity. We give an example in the final section.

But one can also try all other techniques that somehow provide a function uy ; €
U, which by a-posteriori inspection leads to a small residual norm &, s in (1.5). This
can happen to the original Kansa method when executed on a subset of M test points,
or by adaptive bootstrapping techniques like the one in [14, 13] which picks suitable
test centers and trial centers one-by-one. Other alternatives are to use pivoting with
row exchange or to go for a least-squares solution first. Anyway, if the resulting
residual norm 6, ; is small, the result of Theorem 1.1 is still valid, proving that one
actually has a good approximation to the real solution. An illustration follows in the
final section.

As an aside, we note that that a simpler theory is possible, if we optimize over a
non-discrete residual norm on F'. Section 5 will then be obsolete, but one has to solve
semi-infinite optimization problems (if F' carries a sup-norm) or apply least-squares
methods with integrations (if F' carries an inner product).
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9. Tll-posed Problems. For ill-posed problems, continuous dependence fails,
but our method and its analysis will still be useful. We assume that the problem still
has the form (2.3), but we now assume that the “true solution” u € U only satisfies

9.1) Lw =f+peF

where F' contains the available data f and a small residual p. The problem L(u) = f
may be unsolvable. We consider a function 4 € U to be acceptable as a solution, if

IL(@) = L(w)||lr = [|1L(@) — f = pllr

is not much larger than ||p||r. We still assume (1.3) and (1.4), but we have to replace
(1.5)by

(9-2) s (f = Lups)lle. < 615,

because L(u) now is unknown and does not coincide with f. Furthermore, solvability
of the above system now requires

(9-3) c(s)(llpllr + er(u)) < br

instead of (1.6) as a sufficient condition. The proof technique of Theorem 1.1 then
still implies

THEOREM 9.1. If the analytic problem is ill-posed, but solvable by u € Ur in the
sense of (9.1), and if we solve (9.2) by some u;, ; € U,, then there is a bound

* C(r,s
2= up )l < @l + (e (14 S0 ) el )
If the discretization is uniformly stable, then there is a choice of 6, , via (9.3) such
that the above residual error behaves asymptotically like the trial approximation error
er(u) plus ||pl|r-
Proof. We modify the proof of Theorem 1.1 to get

I1L(u = upo)llF I1L(w = I ()|l 7 + |IL(Ir(w) — ug )l r

er(u) + ¢(s) [T L(1 (u) — ug )| p,

er(u) + ¢()|[ T L(I (u) — u)|| 7,

+e(8) |15 (L(w) — f)llr,

+e(s)ITs(f = Llug ) ||,

er(u) + ¢(8)dr,s + SEFLNL(I (u) — w)l|7 + c() | T |l

(&) lplli + en(u) (1+ SE52) + ()8, o

ININIA

IA N

d
For simplicity of the above presentation, we have replaced the second inequality
of (1.4) by

c(s)[IMsgll < llgll for all g € F

which is no serious complication. However, we should comment on what happens with
Theorem 5.1 if we have no analytic constant C, for (5.1). We replace C, in the third
inequality by the constant C4(r) arising in a finite-dimensional version

lurlls < Ca(r) 1L (ur) | for all u, € U,

of (1.2). This is feasible due to norm equivalence, but we leave it to future research
to derive upper bounds for Cy(r).
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10. Examples. We close with a few simple examples. These are not intended
to support questions concerning efficiency or the range of applicability. They only
compare the strategies described in the previous section, and they come out of a rather
simple MATLAB program that solves Poisson problems (2.1) on various domains with
various data.

In view of our preference for small trial spaces and smooth problems, we focus on
cases with a smooth solution which we use to generate the data fq and fp in (2.1).
Since meshless collocation techniques can handle oddly-shaped regions easily, we take
the domain of Figure 10.1 with polar representation

r = 0.3(1.5 + cos(5¢)), ¢ € [0,2m)

and we now explain the notation there and in the following tables. In all cases, the
exact solution of the Dirichlet problem is provided by the fundamental solution of the
Laplacian centered at (2,2), i.e. outside the domain, but not too far away.

We generate test centers for Dirichlet boundary conditions (Test DBC in the
figures) by mapping equidistant parameters from [0, 27) to the boundary. Test centers
for the Laplacian (Test PDE in the figures) are selected by taking all points of a
global grid that fall inside the domain. This is accomplished easily because we focus
on star-shaped domains represented in polar coordinates. We add the locations of
the Dirichlet boundary test centers, because we want the differential equation to be
satisfied up to the boundary. Thus boundary test centers occur twice, because they
serve for testing both the Dirichlet data and the differential equation. In the figures,
we distinguish the Dirichlet boundary test data by circles from the interior test data
for the PDE. There are no geometric calculations at all, and the test points have no
information on their neighbors. The algorithms would run in quite the same way if
data were scattered.

The choice of trial centers depends on the algorithm. For symmetric collocation
(called S fized in the tables, see references in [24, 9, 8]), the test functionals determine
the trial functions, and there is nothing to choose. We just take our already fixed set of
test centers. For the standard unsymmetric collocation due to E. Kansa (K fized in the
tables) the standard choice of trial centers is to take all test centers, if possible. This
method works on a square unsymmetric system and hopes for nonsingularity. But
since we use the boundary test centers twice, as Dirichlet boundary value test centers
and as Laplacian test points falling on the boundary, we have to add intermediate
boundary centers to the set of trial centers in order to have a square linear system.
This point assignment is shown in Figure 10.1.

For the unsymmetric versions of collocation, we do not force the algorithms to
use large fixed sets of trial or test centers right from the start. Instead, we run the
technique from [14, 13] to select test and trial centers adaptively from a large set of
choices described below. In short, the algorithm works on square systems of increasing
size. To proceed to a larger system,

1. add a test functional where the current residual is largest in absolute value,
2. add a trial center that makes the determinant of the new system closest to
one.
If there are N >> n test functionals or N >> n trial centers offered when going over
from an n x n system to a (n + 1) x (n + 1) system, then the update complexity is
O(n? - N) in computation and storage. We leave details to [14, 13].

The choice of trial and test centers is made from a large and fine grid of centers

that extends to [—4,4]?. Note that this range contains the singularity of the true
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solution at the point (2,2), but only the trial centers can be chosen close to the
singularity. The test centers for the Laplacian are those that fall into Q. In addition,
we make sure that the test and trial centers of the methods S fized and K fized based
on coarse fixed center selections are included. Larger and finer sets for the adaptive
choice of centers do not change our results significantly, for reasons to become clear
soon.

The greedy adaptive method of [13] is called K Adap in the tables, and it selects
trial centers as well as test functionals from the large set described above. After it
stops, we freeze the selected trial space and perform a Chebyshev-style minimization
of the residuals on all possible test locations. This is method K Opt in the tables,
and it is the linear optimization described as (8.1) in the previous section. For both
adaptive methods, we weight the Dirichlet boundary data by a factor of 1000 in order
to have some preference for the boundary test data over the interior test data, when
it comes to selecting new test centers.

But now we have to explain our stopping criterion, which is somewhat unusual.
Note that linear equation systems arising from nonstationary collocation problems
have three typical properties:

1. the condition blows up when test or trial centers get close,

2. this blow-up grows with the smoothness of the kernel,

3. but the systems usually have a smaller subsystem that already has a useful

solution. This is in sharp contrast to symmetric stiffness matrices arising from fine-
grained spatial resolutions.
Thus one should always wisely use row and column selection strategies (e.g. pivoting
or adaptive techniques), and stop the calculation at the condition limit, in order to
finish with a solution of a “good” subsystem. Of course, this only holds if no other
precautions like preconditioning [5, 12] are taken.

For all algorithms, we monitor the condition of the square (sub-) matrices that
arise during the calculations. Algorithms are stopped (including pivoting) when the
condition exceeds 10'2. We ignore preconditioning, because we want the condition
problems of the various algorithms to show up correctly for comparison. Since we
use condition as a stopping criterion, and since we know that there is an approxi-
mate solution with very small residuals, approximations with large residuals indicate
premature stopping due to condition problems. Furthermore, refinement of grids for
a very fine-grained selection of trial centers does not help much if there is already a
good supply of trial centers on a more coarse grid that suffices to reach the condition
limit. This is a reason on the trial side to show that it does not pay off significantly
to offer much larger choices of centers. On the test side and for the optimizing tech-
nique, larger choices also do not make sense, because Kuhn-Tucker conditions will
pick O(M) active test centers where the residual error alternates, and if these are
refined locally on a very fine grid, there will be no reasonable decrease of the error.

It is true that our current theory requires trial centers to be restricted to the
domain, while our examples allow trial centers outside the domain. Experience shows
that restricted trial centers lead to a similar behavior, but to larger condition and
earlier stopping. Since we found our adaptive algorithm to be wiser than the theory,
we allowed trial centers outside the domain, being aware of the fact that this should
be handled by the theory of follow-up papers.

In the tables we denote the final degrees of freedom in the approximate solution
by d,, while the number of offered trial and test points are dy,iq; and dyes;. Premature
stopping due to condition will lead to d,, < min(diriar, diest) in the symmetric or in
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the standard Kansa case. In all cases the maximum storage is of order d,, (dy, +dgriqr +
diest), while computational complexity is of order d2(dy + dgriar + diest), if primitive
solvers are used. Note that the adaptive technique works “on-the-fly”, while linear
optimization uses the revised simplex method. A matrix of size diiq; - diest 1S never
needed, and there are no numerical integrations at all. But efficiency is not our major
concern here. Large real-world problems should be split into smaller problems of this
type by either partition-of-unity methods [21] or domain decomposition techniques
[7, 12], and preconditioning along the lines of [5, 12] should be used together with
iterative solvers.

Final error evaluation is done on much finer grids, and the results are called rdy
and 7by for the sup norm error of residuals in the domain and on the boundary. By
Uso We denote the evaluated sup norm error of the approximate solution. Note that if
residuals are evaluated reliably, and if the analytic constant is known, the error bound
(2.4) will apply without further work.

Table 10.1 shows results on the five-pointed domain using multiquadrics ¢(r) =
v1.252 + 72, As in the other tables, the differences in error should not be over-
interpreted. They are strongly influenced by condition, because unstable methods
must stop earlier, but of course there are also differences in the trial spaces. Note
that the final solution for the adaptive and optimizing algorithms uses only 61 degrees
of freedom, even if 499 test functionals and 8724 trial centers are possible. This means
that there is a 61 by 61 subsystem of a full 499 by 8724 system such that the solution
of the subsystem solves the full system with reasonable accuracy. Linear optimization
still improves the quality of the other two non-square variations of Kansa’s method by
one decimal digit, while they share the same choice of 8724 trial centers to pick from.
If plotted, the residuals after linear optimization show the standard equioscillation
pattern known from Chebyshev approximation, while in the other cases the error is
not well-distributed over the domain and the boundary.

| Method [ rdss | rbos | Uso | du | diriat | diest |
S fixed 2.55-4 | 2.43-6 | 1.22-6 | 72 75 75
K fixed || 1.85-3 | 4.98-5 | 2.10-5 | 70 75 75
K Adap || 2.01-5 | 1.13-7 | 1.07-7 | 61 | 8724 | 499

K Opt 3.62-6 | 1.27-8 | 1.06-8 | 61 | 8724 | 499
TABLE 10.1
Results for multiquadrics

For this example, Figure 10.1 shows the distribution of the test and trial centers
for the standard Kansa method, while Figure 10.2 displays part of the trial and test
centers picked by an adaptive choice of the trial space. Observe the dense distribution
of test centers in , while many of the adaptively chosen trial centers are outside of
the domain.

Table 10.2 shows results on the five-pointed domain using Gaussians ¢(r) =
exp(—r?/1.25%). The results are very similar to those of the multiquadrics.

11. Conclusions. We provided convergence proofs for a generalized non-square
version of Kansa’s collocation method, showing that the convergence rates are deter-
mined by approximation results for nonstationary meshless-kernel-based trial spaces.
The rates improve with the smoothness of the solution, the domain, the differential
operator, and the kernel. They hold for large classes of analytic problems, provided
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that there is continuous dependence on the data. On the downside, the naive prac-
tical application of nonstationary kernel-based approximation always faces condition
problems, but new results demonstrate how to cope with these.
There are many possibilities for improvement and extension of these results:
1. Find sufficient conditions for nonsingularity of square Kansa-type collocation
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| Method || rdes [ 7hos | Uso | du | diriat | diest |
S fixed 1.90-5 | 2.06-6 | 9.63-7 | 62 75 75
K fixed || 4.34-5 | 8.87-6 | 4.04-6 | 57 75 75
K Adap || 7.28-6 | 8.11-8 | 6.79-8 | 60 | 8724 | 499

K Opt 1.72-6 | 5.20-9 | 7.45-9 | 60 | 8724 | 499
TABLE 10.2
Results for Gaussians

matrices.

2. Introduce discretization-dependent weights for different parts of residuals into
the theory of this paper in order to align dimension- and order-dependent
convergence rates.

3. For important problems of Applied Analysis, state the continuous dependence
of the solution on the data in precise form and then derive the possible con-
vergence rates for variations of Kansa’s method, using the general theory of
this paper.

4. Implement algorithms of this paper as local components of a global algorithm
using localization features like domain decomposition or partitions of unity
and efficiency-enhancing features like preconditioning and iterative solvers.

5. For such a global algorithm, perform large-scale numerical experiments and
compare observed convergence rates with the theoretical ones of this paper.

6. Generalize all of this to unsymmetric methods for weak problems like the
MLPG method of Atluri and collaborators [2].
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